BYU Astronomy Research Group Joins the Astrophysical Research Consortium (ARC)
As of January 2021 BYU will be a member of the ARC Consortium (Link to Consortium) with access to the ARC 3.5-m telescope and the 0.5-m ARCSAT telescope. The primary use of the ARC 3.5-m telescope time is for graduate student projects. This provides a wide array of instrumentation that is currently being used to study objects in the solar system all the way to studies of the large scale structure of the Universe.
Other BYU Astronomy Facilities
In addition to our telescope time from the ARC consortium, we operate a number of our own astronomical facilities
West Mountain Observatory (West Mountain)
This is our mountain observatory at about 6600 ft above sea level. This consists of three telescopes: 0.9-m, 0.5-m, and a 0.32-m. It is a 40 minute drive that ends in a 5 miles drive up a dirt road. The mountain itself can be seen from campus. We don't provide any tours of this facility.
Orson Pratt Observatory
The Orson Pratt Observatory is named for an early apostle of the Church of Jesus Christ of Latter-Day Saints. It is our campus telescope facility and contains a wide variety of telescopes for student research and public outreach. We operate a 24" PlaneWave telescope in the main campus dome, plus a 16", two 12", one 8", and a 6" telescope on our observation deck. The telescopes are all fully robotic. Beyond this we have a large sections of telescopes used on public nights.
Royden G. Derrick Planetarium (Planetarium)
This is a 119 seat, 39" dome planetarium with acoustically treated walls to allow it's use as a lecture room. Recently we upgraded to an E&S Digistar7 operating system with 4K projectors. The planetarium is used for teaching classes, public outreach, and astronomy education research projects.
Selected Publications
While collisional families are common in the asteroid belt, only one is known in the Kuiper belt, linked to the dwarf planet Haumea. The characterization of Haumea’s family helps to constrain its origin and, more generally, the collisional history of the Kuiper belt. However, the size distribution of the Haumea family is difficult to constrain from the known sample, which is affected by discovery biases. Here, we use the Outer Solar System Origins Survey (OSSOS) Ensemble to look for Haumea family members. In this OSSOS XVI study we report the detection of three candidates with small ejection velocities relative to the family formation centre. The largest discovery, 2013 UQ15, is conclusively a Haumea family member, with a low ejection velocity and neutral surface colours. Although the OSSOS Ensemble is sensitive to Haumea family members to a limiting absolute magnitude (Hr) of 9.5 (inferred diameter of ~90 km), the smallest candidate is significantly larger, Hr = 7.9. The Haumea family members larger than ≃20 km in diameter must be characterized by a shallow H-distribution slope in order to produce only these three large detections. This shallow size distribution suggests that the family formed in a graze-and-merge scenario, not a catastrophic collision.
Observations of exoplanetary systems provide clues about the intrinsic distribution of planetary systems, their architectures, and how they formed. We develop a forward modelling framework for generating populations of planetary systems and ‘observed’ catalogues by simulating the Kepler detection pipeline (SysSim). We compare our simulated catalogues to the Kepler DR25 catalogue of planet candidates, updated to include revised stellar radii from Gaia DR2. We constrain our models based on the observed 1D marginal distributions of orbital periods, period ratios, transit depths, transit depth ratios, transit durations, transit duration ratios, and transit multiplicities. Models assuming planets with independent periods and sizes do not adequately account for the properties of the multiplanet systems. Instead, a clustered point process model for exoplanet periods and sizes provides a significantly better description of the Kepler population, particularly the observed multiplicity and period ratio distributions. We find that 0.56+0.18−0.150.56−0.15+0.18 of FGK stars have at least one planet larger than 0.5R⊕ between 3 and 300 d. Most of these planetary systems (∼98 per cent∼98 per cent) consist of one or two clusters with a median of three planets per cluster. We find that the Kepler dichotomy is evidence for a population of highly inclined planetary systems and is unlikely to be solely due to a population of intrinsically single planet systems. We provide a large ensemble of simulated physical and observed catalogues of planetary systems from our models, as well as publicly available code for generating similar catalogues given user-defined parameters.
⊕ planets with orbital periods in 237–500 days, or a differential rate of 0.06–0.76.