BYU Astronomy Research Group Joins the Astrophysical Research Consortium (ARC)
As of January 2021 BYU will be a member of the ARC Consortium (Link to Consortium) with access to the ARC 3.5-m telescope and the 0.5-m ARCSAT telescope. The primary use of the ARC 3.5-m telescope time is for graduate student projects. This provides a wide array of instrumentation that is currently being used to study objects in the solar system all the way to studies of the large scale structure of the Universe.
Other BYU Astronomy Facilities
In addition to our telescope time from the ARC consortium, we operate a number of our own astronomical facilities
West Mountain Observatory (West Mountain)
This is our mountain observatory at about 6600 ft above sea level. This consists of three telescopes: 0.9-m, 0.5-m, and a 0.32-m. It is a 40 minute drive that ends in a 5 miles drive up a dirt road. The mountain itself can be seen from campus. We don't provide any tours of this facility.
Orson Pratt Observatory
The Orson Pratt Observatory is named for an early apostle of the Church of Jesus Christ of Latter-Day Saints. It is our campus telescope facility and contains a wide variety of telescopes for student research and public outreach. We operate a 24" PlaneWave telescope in the main campus dome, plus a 16", two 12", one 8", and a 6" telescope on our observation deck. The telescopes are all fully robotic. Beyond this we have a large sections of telescopes used on public nights.
Royden G. Derrick Planetarium (Planetarium)
This is a 119 seat, 39" dome planetarium with acoustically treated walls to allow it's use as a lecture room. Recently we upgraded to an E&S Digistar7 operating system with 4K projectors. The planetarium is used for teaching classes, public outreach, and astronomy education research projects.
Selected Publications
Preliminary results of magnetic field measurements in vicinity of magnetosphere and interplanetary space from Mariner IV
During the encounter between Mariner IV and Mars on 14-15 July, no magnetic effect that could be definitely associated with the planet was evident in the magnetometer data. This observation implies that the Martian magnetic dipole moment is, at most, 3 x 10-4 times that of the earth.
The Mariner II spacecraft successfully completed its 109-day journey through interplanetary space and on 14 December 1962 passed Venus at a minimum distance of approach to the planet's center of 41,000 kilometers (6.6 radii of the solid body of the planet). The achievement permitted the first in situ scientific measurements in the vicinity of any planet other than Earth. The results of some of these measurements are reported in the papers that follow.
We demonstrate that the Oosterhoff II (Oo II) RR Lyrae ab variables are hotter by ∼270 K, at the same period, than Oo I variables. Or, at the same (〈B〉 − 〈V〉)0 value the Oo II variables have larger radii than Oo I variables. This accounts for the reason Oo II variables are brighter (0.12–0.20 mag) than Oo I variables. The dependence of the light amplitude of RR Lyrae variables on temperature is independent of Oo type. This makes it possible to derive an accurate set of equations to relate intrinsic (B − V)0 color indices to light amplitudes, which in turn can be used to determine the interstellar reddening (E (B − V)). With just a few variables (∼5), it is possible to determine the E (B − V) to an accuracy of <0.01 mag in the absence of systematic photometric errors. We discuss the errors introduced in color excess determinations by including the Blazhko stars in a solution. A comparison of color excess values of 23 globular clusters and two regions of the Large Magellanic Cloud (LMC), determined with the aid of our newly developed equations, are found to compare favorably (∼0.01 mag) with color excess values found in the literature. Four new Oo III variables, some found in metal-poor clusters, are discussed. An analysis of the galactic-field variables indicates the majority are Oo I and Oo II variables, but a few short-period (log P < −0.36) metal-strong variables, so far not found in galactic globular clusters are evidently ∼0.30 mag fainter than Oo I variables. Oo III variables may also be present in the field. We conclude that the RR Lyrae ab variables are primarily restricted to four sequences or groups. If we assume that the Oo I variables' mean absolute magnitude is Mv = 0.61, the mean absolute magnitudes of the other three sequences are: short-period variables Mv ∼ 0.89 mag, Oo II Mv ∼ 0.43 mag, and Oo III Mv ∼ 0.29 mag. The Oo I fundamental RR Lyrae ab red edge (FRE) and fundamental blue edge (FBE) occur at approximately the following temperatures: FRE T ∼ 6180 K and FBE T ∼ 6750 K. There is a strong dependence of Mv on [Fe/H] as we proceed from the short-period variables to the Oo I variables and to the Oo II variables, but there seems to be little or no dependence of Mv on [Fe/H] for stars within a group, at least for the Oo I and Oo II groups. The Oo II variables exhibit a weak period luminosity relation in V in many globular clusters unlike the Oo II-like variables in Oo I clusters which do not exhibit a P–L relation. The properties of some intermediate LMC clusters are discussed.