BYU Astronomy Research Group Joins the Astrophysical Research Consortium (ARC)
As of January 2021 BYU will be a member of the ARC Consortium (Link to Consortium) with access to the ARC 3.5-m telescope and the 0.5-m ARCSAT telescope. The primary use of the ARC 3.5-m telescope time is for graduate student projects. This provides a wide array of instrumentation that is currently being used to study objects in the solar system all the way to studies of the large scale structure of the Universe.
Other BYU Astronomy Facilities
In addition to our telescope time from the ARC consortium, we operate a number of our own astronomical facilities
West Mountain Observatory (West Mountain)
This is our mountain observatory at about 6600 ft above sea level. This consists of three telescopes: 0.9-m, 0.5-m, and a 0.32-m. It is a 40 minute drive that ends in a 5 miles drive up a dirt road. The mountain itself can be seen from campus. We don't provide any tours of this facility.
Orson Pratt Observatory
The Orson Pratt Observatory is named for an early apostle of the Church of Jesus Christ of Latter-Day Saints. It is our campus telescope facility and contains a wide variety of telescopes for student research and public outreach. We operate a 24" PlaneWave telescope in the main campus dome, plus a 16", two 12", one 8", and a 6" telescope on our observation deck. The telescopes are all fully robotic. Beyond this we have a large sections of telescopes used on public nights.
Royden G. Derrick Planetarium (Planetarium)
This is a 119 seat, 39" dome planetarium with acoustically treated walls to allow it's use as a lecture room. Recently we upgraded to an E&S Digistar7 operating system with 4K projectors. The planetarium is used for teaching classes, public outreach, and astronomy education research projects.
Selected Publications


Haumea is a dwarf planet with two known satellites, an unusually high spin rate, and a large collisional family, making it one of the most interesting objects in the outer solar system. A fully self-consistent formation scenario responsible for the satellite and family formation is still elusive, but some processes predict the initial formation of many small moons, similar to the small moons recently discovered around Pluto. Deep searches for regular satellites around Kuiper belt objects are difficult due to observational limitations, but Haumea is one of the few for which sufficient data exist. We analyze Hubble Space Telescope (HST) observations, focusing on a 10-consecutive-orbit sequence obtained in 2010 July, to search for new very small satellites. To maximize the search depth, we implement and validate a nonlinear shift-and-stack method. No additional satellites of Haumea are found, but by implanting and recovering artificial sources, we characterize our sensitivity. At distances between ∼10,000 and ∼350,000 km from Haumea, satellites with radii as small as ∼10 km are ruled out, assuming an albedo () similar to Haumea. We also rule out satellites larger than ≳40 km in most of the Hill sphere using other HST data. This search method rules out objects similar in size to the small moons of Pluto. By developing clear criteria for determining the number of nonlinear rates to use, we find that far fewer shift rates are required (∼35) than might be expected. The nonlinear shift-and-stack method to discover satellites (and other moving transients) is tractable, particularly in the regime where nonlinear motion begins to manifest itself.



