BYU Astronomy Research Group Joins the Astrophysical Research Consortium (ARC)

As of January 2021 BYU will be a member of the ARC Consortium (Link to Consortium) with access to the ARC 3.5-m telescope and the 0.5-m ARCSAT telescope.  The primary use of the ARC 3.5-m telescope time is for graduate student projects.  This provides a wide array of instrumentation that is currently being used to study objects in the solar system all the way to studies of the large scale structure of the Universe.

Other BYU Astronomy Facilities

In addition to our telescope time from the ARC consortium, we operate a number of our own astronomical facilities

West Mountain Observatory (West Mountain)

This is our mountain observatory at about 6600 ft above sea level.  This consists of three telescopes: 0.9-m, 0.5-m, and a 0.32-m. It is a 40 minute drive that ends in a 5 miles drive up a dirt road. The mountain itself can be seen from campus. We don't provide any tours of this facility.

Orson Pratt Observatory

The Orson Pratt Observatory is named for an early apostle of the Church of Jesus Christ of Latter-Day Saints.  It is our campus telescope facility and contains a wide variety of telescopes for student research and public outreach. We operate a 24" PlaneWave telescope in the main campus dome, plus a 16", two 12", one 8", and a 6" telescope on our observation deck.  The telescopes are all fully robotic. Beyond this we have a large sections of telescopes used on public nights.

Royden G. Derrick Planetarium (Planetarium)

This is a 119 seat, 39" dome planetarium with acoustically treated walls to allow it's use as a lecture room. Recently we upgraded to an E&S Digistar7 operating system with 4K projectors.  The planetarium is used for teaching classes, public outreach, and astronomy education research projects.





Selected Publications

Thumbnail of figure from publication
BYU Authors: Benjamin C. N. Proudfoot and Darin Ragozzine, published in Nat. Astron.

While collisional families are common in the asteroid belt, only one is known in the Kuiper belt, linked to the dwarf planet Haumea. The characterization of Haumea’s family helps to constrain its origin and, more generally, the collisional history of the Kuiper belt. However, the size distribution of the Haumea family is difficult to constrain from the known sample, which is affected by discovery biases. Here, we use the Outer Solar System Origins Survey (OSSOS) Ensemble to look for Haumea family members. In this OSSOS XVI study we report the detection of three candidates with small ejection velocities relative to the family formation centre. The largest discovery, 2013 UQ15, is conclusively a Haumea family member, with a low ejection velocity and neutral surface colours. Although the OSSOS Ensemble is sensitive to Haumea family members to a limiting absolute magnitude (Hr) of 9.5 (inferred diameter of ~90 km), the smallest candidate is significantly larger, Hr = 7.9. The Haumea family members larger than ≃20 km in diameter must be characterized by a shallow H-distribution slope in order to produce only these three large detections. This shallow size distribution suggests that the family formed in a graze-and-merge scenario, not a catastrophic collision.

Thumbnail of figure from publication
BYU Authors: Darin Ragozzine, published in Mon. Not. Roy. Astron. Soc.

Observations of exoplanetary systems provide clues about the intrinsic distribution of planetary systems, their architectures, and how they formed. We develop a forward modelling framework for generating populations of planetary systems and ‘observed’ catalogues by simulating the Kepler detection pipeline (SysSim). We compare our simulated catalogues to the Kepler DR25 catalogue of planet candidates, updated to include revised stellar radii from Gaia DR2. We constrain our models based on the observed 1D marginal distributions of orbital periods, period ratios, transit depths, transit depth ratios, transit durations, transit duration ratios, and transit multiplicities. Models assuming planets with independent periods and sizes do not adequately account for the properties of the multiplanet systems. Instead, a clustered point process model for exoplanet periods and sizes provides a significantly better description of the Kepler population, particularly the observed multiplicity and period ratio distributions. We find that 0.56+0.18−0.150.56−0.15+0.18 of FGK stars have at least one planet larger than 0.5R between 3 and 300 d. Most of these planetary systems (98 per cent98 per cent) consist of one or two clusters with a median of three planets per cluster. We find that the Kepler dichotomy is evidence for a population of highly inclined planetary systems and is unlikely to be solely due to a population of intrinsically single planet systems. We provide a large ensemble of simulated physical and observed catalogues of planetary systems from our models, as well as publicly available code for generating similar catalogues given user-defined parameters.

Thumbnail of figure from publication
BYU Authors: Darin Ragozzine and Keir Ashby, published in Astron. J.
We characterize the occurrence rate of planets, ranging in size from 0.5 to 16 R⊕, orbiting FGK stars with orbital periods from 0.5 to 500 days. Our analysis is based on results from the “DR25” catalog of planet candidates produced by NASA’s Kepler mission and stellar radii from Gaia “DR2.” We incorporate additional Kepler data products to accurately characterize the efficiency of planets being recognized as “threshold crossing events” by Kepler’s Transiting Planet Search pipeline and labeled as planet candidates by the robovetter. Using a hierarchical Bayesian model, we derive planet occurrence rates for a wide range of planet sizes and orbital periods. For planets with sizes 0.75–1.5 R⊕ and orbital periods of 237–500 days, we find a rate of planets per FGK star of <0.27 (84.13th percentile). While the true rate of such planets could be lower by a factor of ∼2 (primarily due to potential contamination of planet candidates by false alarms), the upper limits on the occurrence rate of such planets are robust to ∼10%. We recommend that mission concepts aiming to characterize potentially rocky planets in or near the habitable zone of Sun-like stars prepare compelling science programs that would be robust for a true rate in the range fR,P = 0.03–0.40 for 0.75–1.5 R
⊕ planets with orbital periods in 237–500 days, or a differential rate of  0.06–0.76.
Thumbnail of figure from publication
BYU Authors: Benjamin C. N. Proudfoot and Darin Ragozzine, published in Astron. J.
The dwarf planet (136108) Haumea has an intriguing combination of unique physical properties: near-breakup spin, two regular satellites, and an unexpectedly compact family. While these properties point toward formation by a collision, there is no self-consistent and reasonably probable formation hypothesis that can connect the unusually rapid spin and low relative velocities of Haumea family members ("Haumeans"). We explore and test the proposed formation hypotheses (catastrophic collision, graze-and-merge, and satellite collision) in detail. We flexibly parameterize the properties of the collision (e.g., the collision location) and use simple models for the unique three-dimensional velocity ejection field expected from each model to generate simulated families. These are then compared to the observed Kuiper Belt objects using Bayesian parameter inference, including a mixture model that robustly allows for interlopers from the background population. After testing our methodology, we find that the best match to the observed Haumeans is an essentially isotropic ejection field with a typical velocity of 150 m s−1. The graze-and-merge formation hypothesis—in which Haumeans are shed due to excess angular momentum—is clearly disfavored because the observed Haumeans are not oriented in a plane. The satellite collision model is also disfavored. Including these new constraints, we present a detailed discussion of the formation hypotheses, including variations, some of which are tested. Some new hypotheses are proposed (a cratering collision and a collision where Haumea's upper layers are "missing") and scrutinized. We do not identify a satisfactory formation hypothesis, but we do propose several avenues of additional investigation. In the process of these analyses, we identify many new candidate Haumeans and dynamically confirm seven of them as consistent with the observed family. We also confirm that Haumeans have a shallow size distribution and discuss implications for the discovery and identification of new Haumeans.
Thumbnail of figure from publication
BYU Authors: Darin Ragozzine, published in Astron. J.
We visually analyzed the transit timing variation (TTV) data of 5930 Kepler Objects of Interest (KOIs) homogeneously. Using data from Rowe et al. and Holczer et al., we investigated TTVs for nearly all KOIs in Kepler’s Data Release 24 catalog. Using TTV plots, periodograms, and phase-folded quadratic plus sinusoid fits, we visually rated each KOI’s TTV data in five categories. Our ratings emphasize the hundreds of planets with TTVs that are weaker than the ∼200 that have been studied in detail. Our findings are consistent with statistical methods for identifying strong TTVs, though we found some additional systems worth investigation. Between about 3–50 days and 1.3–6 Earth radii, the frequency of strong TTVs increases with period and radius. As expected, strong TTVs are very common when period ratios are near a resonance, but there is not a one-to-one correspondence. The observed planet-by-planet frequency of strong TTVs is only somewhat lower in systems with one or two known planets (7% ± 1%) than in systems with three or more known planets (11% ± 2%). We attribute TTVs to known planets in multitransiting systems but find ∼30 cases where the perturbing planet is unknown. Our conclusions are valuable as an ensemble for learning about planetary system architectures and individually as stepping stones toward more-detailed mass–radius constraints. We also discuss Data Release 25 TTVs, investigate ∼100 KOIs with transit duration and/or depth variations, and estimate that the Transiting Exoplanet Survey Satellite will likely find only ∼10 planets with strong TTVs.
Thumbnail of figure from publication
BYU Authors: Darin Ragozzine, published in New Astron. Rev.
Kepler-9, discovered by Holman et al. (2010), was the first system with multiple confirmed transiting planets and the first system to clearly show long-anticipated transit timing variations (TTVs). It was the first major novel exoplanet discovery of the Kepler Space Telescope mission. The Kepler pipeline identified two Saturn-radius candidates (called Kepler Objects of Interest or KOIs): KOI-377.01 with a 19-day period and KOI-377.02 with a 39-day period. Even with only 9 transits for KOI-377.01 and 6 of KOI-377.02, the transit times were completely inconsistent with a linear ephemeris and showed strongly anti-correlated variations in transit times. Holman et al. (2010) were able to readily show that these objects were planetary mass, confirming them as bona fide planets Kepler-9b and Kepler-9c. As a multi-transiting system exhibiting strong TTVs, the relative planetary properties (e.g., mass ratio, radius ratio) were strongly constrained, opening a new chapter in comparative planetology. KOI-377.03, a small planet with a 1.5-day period, was not initially discovered by the Kepler pipeline, but was identified during the analysis of the other planets and was later confirmed as Kepler-9d through the BLENDER technique by Torres et al. 2011. Holman et al. (2010) included significant dynamical analysis to characterize Kepler-9’s particular TTVs: planets near resonance show large amplitude anti-correlated TTVs with a period corresponding to the rotation of the line of conjunctions and an additional “chopping” signal due to the changing positions of the planets. We review the historical circumstances behind the discovery and characterization of these planets and the publication of Holman et al. (2010). We also review the updated properties of this system and propose ideas for future investigations.